
70ftI 601 MOMA ENGINEERING IMPACT ON THE STARS SEE ARCHITECTURE 1
SEE ARCH ONIO(U) INSTITUTE FOR DEFENSE ANALYSES

I ALEXANDRIA VA E K BAILEY APR 9 IDA-P-1910
7MCLASSIFID90-84C3 M3F/C 23/2 M

,I

1111 1 , .oj :~ 8 lI2.5
I. u___-__

t ~J4O 2.036 Ill g1111'10 1 _112.

1.8

IIII125 1 1

i%

. w w, % . ,,, .. S. S ,. . ., Sv, ,..S o. ,S. . ,.S. . . ,5. . - 0. , ,0, , ,S . . .- -

_. UNCLASSIFIED Copy o 59 copies

I , ' V""," ".- -

00 (4,

IDA PAPER P-1818

HUMAN ENGINEERING IMPACT ON
THE STARS SEE ARCHITECTURE

SEE-ARCH-008-001.0

Elizabeth K. Bailey S LECTE.,
OCT 2 2 198753

April 1985

' . -.,

,. ".- %,,-,

Prepared for .'

Office of the Under Secretary of Defense for Research and Engineering -

;00
DO-,;

APpro~vt4i fc~ ~bkr; ,

C;, .l; 'q

___tr ut JL~qi_: t md c

INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, VA 22311

UNCLASSIFIED IDA Log No. HO 85-29554 -

-.- .,.. _, . . . , A *. . , .*. ...A-, . , ,.. ..: ,,.,*. .,*- - ., ,..;... . .-,\. _

DEFINMTONS
IDA publishes She 1011001"g ic8COmMcl Is cMt lOW Msuls Ofa ft Wink.

Reports
'I Ncpm~ft b am O Sc l mcdMWW mi enmd Mmc ccriilly cnsierei Prciucts IDA pcbWcbc.

They, mmmclii saw"i rusht of mdci pANNUi abl (a) av am cimc bIlu cm indcisicns
4 c~lil '- mowi p I rc clb) address Imeus ol dcigtMll showni to the Ezocuif

Ilksoch cA Cwsgicm cudl Smh public, or (cici) 11mthm Met buM cIPild 10cm1m1
hompllculss. IDA flcport we rulcusi by outside pinch ofci ctoi seeum Vx* hMg

Papers
Powu morsclivsm clcly alaa l i I tloc" c pcilcy lacum. Tbmy cmsocatc
Ic -ccl- ci cpccil umulysm res ports or pbcu of s took, ad bee or qick reaucio
work. Papers we icuc to oucn OW. they most stesdudr cMOWic to dim czpcc of
iciccci popm. shopiciuiui crcs

Moemrndlum Reports
IDA McmciumicmRcpm wus illi eir Sc cscc m s s o oruci the cudlyi tc
record --bluu111 wink dccc oIm uik rocs suc cud mdcit m cl, tcbmitsa pum
oclicNlcs; to mmdce walmblc piclimimmoy ad t Icilw Nus of -ulc or of woing

valmil;w ci Iso misI ccfciccs c flp W ~bdilg, of of duas dewccpci In

an islumic m.

The -ccl- of IDA wink urs min cc s-si by biclg emd lmlmmcIe mcmcismis Is apsc
adi cllm. icde ci by the opcmc=, whco SPPWcut.

Ts work rpmi In Sic iccument was ommiuc mei c onractb MU 64 C OWl for
Me Office ofNo Unici Ichaclui1 ml Deismfor cII Rmcic hud Imglmsmlmg. The pablls
of SWc IDA iccmmi ios. so laicl uiceumcda by So client. mcorchinch ft contentsIe com o soub I the officugSsil posllso of am sgM

IThis pmha bW bscm d is uINb IDA is whose Sil mstol higp clMid" ofSrcgms

cbWsclkhy adi sund asellcl OWamsie shot Oi Sc ulcisc slem 1m the

Pobli relsscollltcle dirtbouls; WAlcufc

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS%

Unclassified None
* 2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILAIIILITY OF REI'ORT

2b DEC LASSI FICATION/DO WNG RADING SCHEDULE Public releaseldistribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REP1OkT NUMBIER(S)

P- 1818

6a NAME OF PERFORMLNG ORGANIZATION 6b OFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Institute for Defense Analyses A

6c ADDRESS (City, State, and Zip Code) 7b ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St.
Alexandria, VA 22311

4j NANIE OF. FLNDINGiSPONSOI4ING 8b OFFICE SYMBOL 9 PROCUREM.ENT INSTRUMIENT IDENTIFHCATION NUMBERhI
ORGANIZATION (if applicable)

STARS Joint Program Office SIO MDA 903 84 C 0031

Sc ADDRESS (City, State, and Zip Code) l0. SOURCE OF ILNIiNG NLMNIBRS

1801 N. Beauregard St. I'RO(,RANI PRHOJECT I'ASK VORK UNIT
Alexandria, VA 22311 ELEMIENT NO. INO. NO. ACCESSION NO.

___ IT-D5-429
It TITLE (include Security Classification)

Human Engineering Impact on the STARS SEE Architecture SEE-ARCH-008-00 1.0 (U)
12 PERSONAL AU71hOR(S)

* Elizabeth K. Bailey--
14__________DATE__________

3a TYPE OF REPOkT --- I IMIE CO5,ERED 11 ~EOF R~EPORT (Near, Month, Dal 1 PAG;E (:oLNT

Final FROM ____TO 1985 April 46

lh StlILEILIrARY NOTATION

17 ~ ~ ~ i COSATI CO)-i LIJC ERNIs (Continue on reverbe if necesarv and identli hs block number)

--l I (; -II1- 1 Software Engineering Environment; Human Engineering, Humian Factors Softtare
User Interface; Environment Architecturei Joint Service Sott~kare Engineering Envi-
ronment (JSSEE); Software Technology fA? Adaptable, Reliable S.%stems~ (ST ARSI

19 ABSTRACT (Continue on reverse ir necessary and identify by block number)

The purpose of thiis study is to address human engineering issues as they relate to thie Joint Service SoftA are Ecnem
Environment (JSSEE) and, in particular, to discuss their impact on the development methodology. suplpori nu2 too'is. and the
ISSEE architecture. The purpose is not to address what constitutes 'good" human engineering ot an en%. iionient exccpl 'a
very high level, since much much of that can only be answered within the context of the entire en, ironnment Rather. :heo iecj:.c
is to outline the approach that is needed to ensure that human engineering goals are incorporated in a mneaninctul Aj-, and n1.i
human engineering methods and tools are successfully integrated into the overall development inelliodoiocvN

2Q l)I llii'l IN A',AILAA1ilIllY oF AbjSTIRACT2 515H tIs-tHIl ilI lti

* I NCI.SSIFHED I %LNIFFllED] SAME As 1419' [3 irwic l-Rs Vrnclassified

22,. NF, 014kESI'iNShILE INl)INlID Al. 22b IFIA.1l'lltNK %-~d~ S. . iT. I. 7l 1 %1'. 11(1ip

DI)F()%1 47, 8 MA 13 APRl vdition m~Aw he used until v~hjustvoi

1,11 ,[her edl is .r, usilt

%S

UNCLASSIFIED

... .l

IDA PAPER P-1818

HUMAN ENGINEERING IMPACT ON
THE STARS SEE ARCHITECTURE

SEE-ARCH-008-001.0

'-a..
.-a.

Elizabeth K. Bailey

-Cs

April 1985 -

a,.*

I .D ,4'S

-4. --.-..

i 2 ,',; t, t"-".

IDA

INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 0031
Task T- D5-429,"

UNCLASSIFIED

Table of Contents

Page

Preface iii
1 Introduction..

1.1 Responsibilities of the Human Engineer 2

2.0 Human Engineering Across the Life Cycle 6
2.1 Pre-Software Development and Software

Requirements Analysis 6
2.2 Design and Implementation 7
2.3 Operational Phase 13
2.4 Tools for the Human Engineer 13

3.0 Evaluation ... 14
3.1 Analytical Evaluation Methods 14
3.2 Empirical Evaluation Methods 15

3.2.1 Minimal Requirements: Interfaces,
Users, and Tasks 16

3.2.2 Informal Empirical Evaluations 17
3.2.3 Formal Evaluations 18

3.3 Evaluation Facility Required for the JSSEE 21

4.0 Generating Usability Specifications 24

5.0 Architectural Issues 26

6.0 Recommendations .. 29

References ... 33

*-

PREFACE

The purpose of this study is to address human engineering
issues as they relate to the Joint Service Software Engineering
Environment (JSSEE) and, in particular, to discuss their impact
on the development methodology, supporting tools and the JSSEE
architecture. The purpose is NOT to address what constitutes
"good" human engineering of an environment, except at a very high
level since much of that can only be answered within the context
of the entire environment. Rather, the objective is to outline
the approach that is needed to insure that human engineering
,'oals are incorporated in a meaningful way and that human
engineering methods and tools are successfully integrated into
the overall development methodology.

Section 1.0 contains an overview of the contributions and
responsibilities of the human engineer, especially as these
differ from those of the hardware and software engineer.

Section 2.0 contains a discussion of human engineering
issues across the life cycle as well as a discussion of various
methods which have been developed to address these issues and
supporting tools needed.

Section 3.0 contains a lengthy discussion of various
evaluation methods, ranging from paper and pencil analyses of
design features to formal experimentation with representative
users.

Section 4.0 examines a number of concepts commonly
associated with human engineering. Requirements that a system be
"easy to learn for novice users" or "powerful for experienced
users" are vague and unverifiable when stated in that form. It
is shown how these requirements can be expressed in the form of
precise, testable specifications that can serve in guiding the
design, in comparing alternative designs, and as the basis for
system acceptance tests.

Section 5.0 contains a discussion of architectural issues.
In order for a system to be properly human engineered, it must
allow for cycles of design, evaluation, and re-design. This
imposes a major requirement on the system architecture which must
be such that it allows each specialist (hardware, software, and
human factors) to pursue his or her special concerns in a way
that is cooperative and non-interfering. In the same way that the
software designer has traditionally isolated the software from
the effects of various hardware changes, the computational
portion of the software should he isolated from the effects of
changes in the user interface.

iii -

-.. . . . - -..

-~~~~1 w.W-- - --- - -

1.0 INTRODUCTION
-

No matter how powerful or potentially useful the JSSEE may
be in terms of its functionality, if it is not usable, its impact
will be greatly diminished. The JSSEE represents a special
challenge because it will support such a diverse user community
and set of activities. Designing a system which is highly usable
for all these various users will not be a trivial undertaking.

What does human engineering contribute that is not already
contributed by software engineering? Surely there are many
software designers who are concerned with building usable as well
as useful systems. one contribution stems from a view of the
user as an integral part of the system, situated not on the
periphery as an "end user" but at the center. The resulting
design is viewed and analyzed from the perspective of the user.
This perspective represents an important step toward achieving
consistency in the design, especially at a global level. The
consequence should be a user interface that is designed and
evaluated as a coherent whole in all its aspects (command
language, error handling, system feedback, help facilties,
tutorial aids, etc.) rather than being scattered among different
software components and "falling out" as a by-product of the
programming task.

A second unique contribution of human engineering is a
reliance on user behavior and performance as a major source of
input to the design process. The human engineer relies on
empirical observation - on observation of what people do, how
they behave, what errors they make, how they go about
accomplishing a given task, how long it takes to accomplish, and
so on - in guiding and evaluating design decisions. The idea of
evaluating a system in terms of its effects on user performance
is relatively new for computer scientists and is one with which
behavioral scientists are more likely to feel comfortable. Moran
(1981) expressed the difference in emphasis as follows:

Computer science, of course, has not been totally
oblivious of the computer user. Substantial sub-fields
of computer science, such as programming languages and
computer graphics, are directly concerned with users
and how they communicate and interact with computer
systems. The treatment of user behavior, however, is
typically cavalier.

It is worth noting that in measuring and evaluating the users'
performance, we are in reality evaluating the performance 3E the
JSSEE as a whole since that performance will reflect the combined
result of the hardware-software-human system working to
accomplish a given task. Thus, the evaluation of user

1 °

0

...-- -.-- pi

Y performance will lead directly to meaningful measures of system
productivity.

1.1 Responsibilities of the Human Engineer

Broadly speaking, the human engineer is responsible for the
design, evaluation, and maintenance of user interfaces to the
system. This may not be a single person but in a system the size
of the JSSEE is likely to be an entire team.

To describe the JSSEE as a hardware-software system is
incomplete at best. It is a HUMAN-computer system - a fact that
should have major consequences for the way in which it is
developed. In order to optimize the performance of the system as 0
a whole, one needs to be concerned not only with the performance
of the hardware and software components but also with the
performance of the human components. It is the job of the
hardware and software engineer to evaluate the load on the
hardware and software in alternative configurations. By the same
token, it is the job of the human factors engineer to evaluate
the load (physical and cognitive) on the users and to be
concerned with their performance (e.g., learning time, errors).
Each specialist relies on specific methods and tools for
performing these kinds of analyses. Much of this paper deals
with the methods and tools needed by the human factors engineer.

There are four major components involved in human
engineering for the JSSEE:

- The first involves the establishment of goals for the user
interface. Because different groups of users (and even different
activities) have different needs, these requirements must be
expressed with respect to specific user groups and activities.
An example might be the following: "Ease of learning and ease of
retention are of primary importance for project managers using
the JSSEE for resource estimation." Note that this requirement
applies not only to automated functions provided by the JSSEE but
to the various non-automated methods and procedures which will be 9

part of the JSSEE as well. These goals can be translated into
specific, verifiable requirements specifications which can serve
as the basis for acceptance tests of system usability. It is
recommended that this be done at least for those JSSEE functions
that support highly critical user activities.

- The second major component is the use of various methods
and aids during the design phase to maximize the likelihood of
designing a system which meets its usability goals.

2

.

- The third major component involves a reliance on
evaluation - especially on testing with representative users - to
guide the design process. The earlier this evaluation can begin,
the less disruptive will be the inevitable design changes.
(Technically, this third piece is subsumed by the second but it
is discussed separately because empirical evaluation plays such a
central role in human engineering work.)

- The fourth major component is the design of a system
architecture which isolates the impact of changes to the user
interface from other software components. This is particularly
important for allowing cycles of design, evaluation and
refinement.

The following sections outline issues arising across the
life cycle as well as methods which are available and supporting
tools needed. The human engineering of human-computer systems is
a new field, borrowing concepts from traditional, hardware-
oriented human factors engineering as well as from psychology,
linguistics, computer science, and other fields. The two sub-
fields of cognitive psychology and psycho-linguistics are
especially valuable sources of ideas because much of the "load"
on the user is more mental than physical.

It is worth noting at the outset that much of the strictly
physical and perceptual aspects of workstation design are
reasonably well understood (such as the minimum character height
required for legibility at various viewing distances).
Concerning much of these, a set of guidelines and standards
should be straightforward to put together for the JSSEE.
However, significant physical issues exist if it is desired to
explore substantial variations from current practices (such as
wall sized viewing surfaces). And, of course, empirical
evaluation is also essential for physical and perceptual aspects.
Nevertheless, the design of the more cognitive, conceptual
aspects are less straightforward and are not nearly as well
understood and that is where the bulk of the human engineering
effort must be directed.

It should also be noted that there is no single agreed upon 0
methodology for the human engineering of human-computer systems. ,
Most of the methods discussed in this paper are relatively
untried or have been used primarily in research contexts. There
is, in addition, an almost total absence of tools to support
these methods. This should not be interpreted as reflecting on
the value of these methods but, rather, as reflecting on the ad
hoc, unstructured way in which user interfaces are typically
developed.

The following attempts to point to the pieces of a human
engineering methodology for the JSSEE. While it is intended as a

3

VV0

useful starting point, it leaves a significant amount of hard
work and creativity to the JSSEE developers. The JSSEE
represents an important opportunity to incorporate human
engineering in a meaningful way from the earliest stages of
development.

Dl.4

2.0 HUMAN ENGINEERING ACROSS THE LIFE CYCLE

2.1 Pre-Software Development and Software Requirements Analysis

The activities which lead to a useful requirements document
from a human engineering perspective are much the same as those
which lead to a useful document from a hardware or software
perspective. The end result should be a thorough understanding
of required system functions (manual as well as automated),

* performance requirements, operating environments, constraints,
etc. The earliest decisions concern which system functions to
automate and the nature and extent of that automation. These
decisions - which require input from hardware, software and human
engineering - should be based on a number of factors including
costs (both development and operational), reliability,

* feasibility, and so on. It is the responsibility of the human
engineer to understand how the automation of specific functions
will impact the way in which users carry out their tasks and, in
particular, how they will impact the physical and mental load on
various groups of users. This is likely to be difficult in the
case of the JSSEE given the wide variation in the operational

(procedures of different software organizations.

There are additional questions that belong more exclusively
to the domain of human engineering and that require an
understanding of the needs of specific groups of users and the
demands of different types of activities. User interface

• characteristics that may be desirable for one class of users or
for one type of task may not be desirable for another. Ease of
learning, for example, may be of overriding importance for
inexperienced or infrequent computer users while efficiency and
power may be of far greater importance for experienced or every-
day users. For tasks that are repetitive in nature, requiring a

* low level of problem solving (such as routine data entry and text
editing), efficiency of physical action (as measured, for
example, by the number of keystrokes) may be a major concern. In
contrast, for tasks that inherently require a high-level of mental
effort (such as some aspects of software design), the concern
will be to minimize the user's cognitive load and reduce user
errors, in effect, maximizing mental rather than physical
efficiency.

An early step in the human engineering of the JSSEE will be
to establish design goals for the user interface (or user
interfaces). Specifically, this will involve characterizing
various groups of JSSEE users and their activities in terms
which have consequences for design (e.g., infrequent users,
repetitive activity) and, of course, being explicit about the
nature of these consequences (e.g., ease of learning, efficiency

5

W -.77-777777-. . . - %, , . t , . * . " . -. .* . h ' . . -

of physical action). This information can be obtained throughthe use of surveys and interviews as well as through the direct

observation of users.

An early step in the human engineering of the JSSEE will be
to establish design goals for the user interface (or userinterfaces). Specifically, this will involve characterizing

various groups of JSSEE users and their activities in terms which
have consequences for design (e.g., infrequent users, repetitive
activity) and, of course, being explicit about the nature of
these consequences (e.g., ease of learning, efficiency of
physical action). This information can be obtained through the
use of surveys and interviews as well as through the direct
observation of users.

Simply establishing a set of usability goals is a postive
step because it forces the developers to think in detail about
what usability means for different users and different
activities. These goals can provide a valuable framework for
design activities and can, at least, steer the design effort in
an appropriate direction. In the case of critical user
activities, one may choose to go one step further and transform
these goals into precise, testable requirements specifications
that can serve as the basis for generating system acceptance
tests of usability. Since the idea of usability testing is
closely related to the more general topic of user-interface
evaluation, we will return to this topic in Section 4.0 after
addressing evaluation issues in Section 3.0.

2.2. Design and Implementation

Design and implementation of the user interface is expected
to proceed in a much more iterative fashion than the design and
implementation of other parts of the software. Evaluation,
especially in the form of user testing, should play a critical
role throughout the development process. In the following
discussion, a general distinction is made between methods to
guide the design and implementation of user interfaces and
methods for evaluation. It should be kept in mind that the two
classes of methods are used continually and iteratively
throughout the development.

From a human engineering perspective, the goal of the design
and implementation phases is to develop a system which meets the
usability goals outlined in the previous phase. There are a
multitude of potentially useful features for constructing user
interfaces (e.g., menus, command languages, touch panels, icons,
pointing devices, function keys, etc.). The challenge lies not
only in selecting specific features but in putting them together

6

.23

so that the design as a whole is coherent and consistent. As
Rubenstein and Hersh succinctly express the problem (1984), "Every
system has good features. It's just that few have good designs."

Consistency in the user interface is an important
determinant ot many aspects of usability (i.e., ease of learning,
efficiency of use, error-proneness) since it allows the user to
make predictions about the behavior of the system on the basis of
limited past experience or on the basis of knowledge of analogous
domains. A large part of the human engineer's job is to ensure
that the system exhibits a consistent and predictable set of
behaviors. While it is easy to say that consistency is a goal,
it can be difficult to realize in practice. For one thing,
consistency can (and should) occur at many levels. We can talk
about consistency in the set of physical actions required to
elicit a given set of system responses, consistency in the way
that analogous functions are accessed across different software
products or tools, consistency in the syntax or semantics
underlying a given command language, and consistency at a global
level in terms of the conceptual framework needed to understand
and interpret all aspects of system behavior (system messages,
on-line help, etc.). Because the user interface encompasses so
much and because consistency, particularly at a global level, can
be difficult to achieve, human engineering cannot be effective as
a last minute, cosmetic remedy for a poor system design. To be
effective, the human engineer must be an integral part of the
design team. One would not think of leaving out hardware or
software expertise during the early stages of design. It is
equally important that human factors expertise be represented.

The designer can turn to several forms of guidance in trying
to develop the best design possible. The following represent
major categories of help for the designer of user interfaces.
Much of this help takes the form of trying to insure various
forms of consistency.

- Design Guidelines and Principles

Design guidelines represent one means of summarizing current
knowledge and opinion. Several extensive compilations exist.
Smith and Aucella (1983), for example, have compiled
approximately 600 guidelines from a variety of sources. An
example guideline is the following: "The color blue should only
be used for background features ir. a display and not for critical
data." Guidelines can be a valuable source of help for the
designer, both in the early stages of design as well as much
later. There are, however, several limitations in their use.
Guidelines can contradict each other and is not often clear what
the priorities among them should be. Relatively few have been
experimentally validated. Many guidelines are context dependent

7S

- a guideline found to be useful under one set of conditions may
not be under another set. Conversely, guidelines which apply
across a variety of contexts are likely to be so vague as to be
almost useless. "Write good error messages" is an example of one
very general but vague guideline - for any given group of users
or tasks, it is not always obvious what a "good" error message
is. The real problem is knowing when and how to apply guidelinesin a specific context and to do so in a way that results in a

coherent whole. As Hartson and Johnson (1983) point out, "This
work on principles has led to a need for methodologies and tools
to facilitate inclusion of these principles in interface design."

Guidance can also be found in the form of project-specific
standards. For example, standards may specify the format of
system messages or the form of command abbreviations. The
primary intent is to encourage consistency across different
software functions which are typically designed and implemented
by a number of different people.

- Language Models of the User Interface

Substantial interest has been directed to the study of
human-computer interaction from a language viewpoint. The
obvious implication of this perspective is that one can represent
and analyze that interaction in terms of its lexical units (e.g.,
button presses, toggle switchings, key presses), its syntax and
its semantics (pointing, deleting, etc.). The very attempt to
represent the dynamic, two-way dialogue between the user and the
computer provides a much needed framework for describing and
analyzing the design. The value of a language model is expressed
by Hartson and Johnson: "Without a model of interaction, the
elements of the interface have no cohesion but are simply a group
of random, unconnected messages, displays and user actions. This
lack of a framework leads to dialogue development procedures that
are unstructured and random as well."

An example of the use of a language description in analyzing
a user interface for consistency is provided by Reisner's work
(1981). Reisner used a formal language grammar (BNF) to describe
the set of user actions required to operate each of two versions
of an interactive graphics system. The two versions contained
identical functions but differed in their user interface. On the
basis of differences in the measured complexity of the grammars
for the two versions, Reisner was able to make explicit
predictions about differences in ease of learning. She was also
able to point to specific cases of inconsistencies in the
underlying production rules (conceptually similar commands
required conceptually dissimilar sequences of user actions). She
predicted that these inconsistencies would lead to a high rate of
user errors. Both sets of predictions were confirmed in a

=-'. 8

S.. .- *o

subsequent experiment. By describing the set of user actions as
a language, Reisner was able to pinpoint design difficulties on
the basis of a pencil-and-paper analysis.

- Conceptual Models

There is ample evidence that the knowledge that users have
about any given system is in the form of a "conceptual model" - a
model that the user adopts of the system's objects, operations,

* relationships, and terminology. In trying to learn a new system,
the conceptual model typically takes the form of an analogy in
which the computer system is viewed as being like something else
with which the user is already familiar. The model provides a
framework for the user in which to organize and interpret the
behavior of the system and to make predictions about how the

* system will behave in new circumstances. To the extent that
these predictions are accurate, the conceptual model is useful.
A major objective in designing any system should be to facilitate
the development of a useful, consistent conceptual model, either
by patterning the behavior of the system after a common analogy
or by creating a new model which is consistent in all its aspects

((i.e., command names, error messages, help facilities, user
documentation).

An example of a conceptual model in action is provided by a
study by Mack, Lewis, and Carroll (1983) who observed a group of
typists learning to use a word-processor for the first time. The
conceptual model consistently adopted by the typists was based on
a typewriter, an analogy that served both as a source of help and
as a source of interference. Mack et al. provide the following
description of the learning behavior of the users in that study:

It is natural that learners try to relate how the text-
* processing system works to what they know about

typewriters. On the positive side, participants did
not have trouble typing basic alphanumeric characters
or with the fact that characters appear on a video
display rather than on paper. Other functions,
however, reveal inappropriate expectations about how
the text-processing system operates.

Participants were surprised that the SPACE bar,
BACKSPACE and RETURN keys not only moved the typing
point but also changed material they had already
typed...Participants also tried to relate the screen
into which text was entered to a blank sheet of paper
in a typewriter, but had trouble doing so. They
wondered where the top, bottom, and margins were, since
the screen was smaller than a complete page. They
wondered how to set the margins, since the familiar
mechanical controls of the typewriter were missing.

9

There was message information on the screen that they
had not typed and they wondered whether

this would

appear on their finished printed document.

The typewriter analogy also left the typists ill-prepared for the
terminology of the text-processing world:

One participant, for example, wondered what a cursor
was after several hours of using the system. Another
wondered "who" the printer was. Yet a third wondered
if she was the printer.

Lest the reader think that these kinds of difficulties
afflict only the first-time computer user, Nielsen (1984) found
exactly the same kinds of problems when professional programmers
and computer science students were faced with the problem of
learning to use a syntax-directed editor with windowing
capabilities; all had extensive experience with line-oriented and
screen-oriented editors.

While the learners in the Mack et al. experiment
generalized from their knowledge of typewriters, our
learners generalized from their knowledge of
traditional "glass-TTY" interfaces...

For example, all of our users had problems the first
time they created a long line in a program. The line
would not fit inside the window and part of the line
was therefore invisible. It took some time for our
learners to realize that the missing part of the line
had not been dropped by the editor but was still
present inside the computer and could be worked on.
They had trouble thinking of the concept of horizontal
scrolling, which of course may also be due to their
considering a program a one-dimensional structure that
can only be scrolled vertically...

One learner was puzzled that the editor as explained
above did not show very long lines in full and
proceeded to look through the user's guide for
information on how to switch the "word wrap" mode. The
editor did not have such a mode and the user was
supposed to use scrolling instead. But it took him a
long time to realize this.

The explicit attempt to design a useful conceptual model will go
a long way toward achieving the goal of global consistency. All
aspects of the system's behavior should be consistent with that
conceptual model. For example, error messages should be

10

- -' .4 .- '-"
"

- '.' .'-'-. • ", '.' .''''- '- ". " " '., . " " .' '-' '-' ''' $''A ' * 4

Lp
p

expressed in terms of the operations and objects of the
conceptual model and not in terms of the underlying hardware or r.
software.

It may be the case that more than one conceptual model is
desirable for the JSSEE, depending on the tasks and users. This
is an issue that can only be decided by further study, perhaps in
the form of experimentation with representative users. The
starting point will be to understand the backgrounds and
terminology of the different classes of users and the conceptual
models they are likely to adopt. Armed with this knowledge, one
may choose to explicitly reinforce one or more models. As an
alternative, one at least has a basis for making predictions
about the types of difficulties learners are likely to run into
based on inappropriate analogies. One can then design tutorial
aids and other forms of user documentation to minimize those
difficulties.

2.3 Operational Phase

One of the primary activities of the human engineer during
the operational phase is to obtain feedback about system
usability. In addition to the use of surveys, interviews, and
on-line consultants, the automatic collection of usage statistics
can provide an important source of information. These statistics
can be used to identify the system functions which are used
infrequently. One can then ask whether this reflects a lack of
usefulness or a lack of usability. If the problem is one of
usability, one may choose to re-design that portion of the user
interface.

2.4 Tools for the Human Engineer

The general classes of tools needed by the human engineer

include:

- tools for simulating and prototyping user-computer dialogues.

These could, for example, accept as input a BNF or state-
transition diagram with associated actions and produce as output
a simulation of the dialogue between the user and the computer.

- tools and associated databases for creating, modifying and
storing displays of various types (graphics, text, forms, voice,

, ..A-.,.. ,-o ,,- -,-P. .- -.- ,.*d*i.* ,.. * "- ". --.. . .

menu, keypad and touch-panel displays) and general displays
definitions to ensure consistency across the system (Hartson and
Johnson, 1983).

- tools and associated databases for defining input languages
of various types (which can be in the form of menu selection,
keypad key, command string, forms filling, voice input). Hartson
and his colleagues at Virginia Tech are working on a tool which
develops a formal definition on the basis of example productions.
Thus, it requires no special training in formal language
definition.

- tools for evaluating user interfaces. These are discussed in
Section 3.3.

12

.

3.0 EVALUATION

Evaluation plays an especially critical role in human
engineering work, particularly in the form of testing with actual
users. The knowledge does not exist to guarantee an acceptable
user interface solely on the basis of design guidelines,
standards or anything else. There are too many variables, in
terms of design alternatives and user characteristics, whose
effects are difficult to predict. It is essential to obtain
objective feedback about the design, especially at an early point
in the development before change becomes prohibitively expensive.

There are two basic approaches to evaluation. In the
analytical approach, the evaluation is based on an analysis of
features or properties of the user interface; the empirical
approach focuses, not on design features, but on the user's
behavior in interacting with the system. Both approaches can
vary considerably in terms of their formality and objectivity.
Neither is the single best approach for evaluating the JSSEE -

both can be useful (and should be used) for particular purposes
and at particular points in the development.

3.1 Analytical Evaluation Methods

Analytical methods represeit an "armchair" approach to
evaluating user interfaces. An example of a somewhat subjective
evaluation would be a check for adherence of a user interface to
design guidelines. An example of a more rigorous analytical
evaluation is represented by Reisner's (1981) work, described in
Section 2.0, analyzing the grammar underlying two different user
interfaces to the same functional system. Lindquist (1985) has
proposed a technique based on the application of conventional
software metrics for evaluating the complexity of the control
structure underlying human-computer dialogues. He assumes that
measured complexity is related to various aspects of user
performance such as ease of learning although no attempt has been
made to validate this relationship.

One of the strengths of the analytical approach is that it
generates specific predictions about hypothesized sources of
difficulty in a design and, thus, can serve a valuable diagnostic
role (for example, it not only predicts that a given user
interface is difficult to learn but is explicit in pointing to
the source of the difficulty). In addition, substantially less
time and money are required to evaluate a user interface based on
an analysis of its properties or features as compared to even the
most rudimentary evaluation with real users. The main problem
with the approach is that it generates hypotheses - not
observations - about user performance. These hypotheses still

13

... . i| iq - -k - . .
- ' & '

-
" " ° "

. ."" "

require validation with actual users. Given such validation, one
has some degree of confidence in the validity of the analysis for
similar systems in the future.

3.2 Empirical Evaluation Methods

The analytical approach represents a valuable source of
predictions concerning user behavior but the only truly objective 0
and sure way to discover whether or not a design is usable is to
try it out with representative users. If, for example, one is
interested in evaluating a given user interface for ease of

learning, one cannot do this solely on the basis of an analysis
of design features or any other attributes of the user interface.
There is no single feature or combination of features that will e
guarantee ease of learning. Instead, one must observe users
actually learning to carry out a task with the system. As with

analytical methods, empirical methods differ in terms of their
formality and rigor, ranging from informal, observational studies
to formal, standardized tests. The primary criterion for deciding
on the degree of formality necessary is whether the purpose is to 0
evaluate a single design or to choose among a set of alternatives
(Table 1). If the purpose is to evaluate a single design, an
observational study is sufficient. If the purpose is to choose
among design alternatives, one must turn to a more formal set of
procedures. Both of these methods are discussed below. First,
however, is a brief discussion of the minimal requirements for
any empirical evaluation, regardless of the degree of formality.

EVALUATION METHODS

NON-EMPIRICAL EMPIRICAL

PURPOSE Analytical Observational Standardized

Focus on a X X
single design

Compare
Alternative
Designs x x

Table 1: Evaluation Alternative3 and their Use

14

.5

3.2.1 Minimal Requirements: Interfaces, Users, and Tasks

In order to conduct an evaluation, one obviously needs
something to evaluate. Fortunately for the human engineer, one
does not need to wait for a completed system but can evaluate a
prototype or simulation at an early point in the development. It
is not even necessary to have a computer in order to simulate key
aspects of a user interface. Rubenstein and Hersh (1984), for
example, suggest having pairs of users work together to simulate
various aspects of human-computer dialogue, with one person
taking the role of the user while the other plays the part of the
computer. This informal procedure requires minimal resources and
yet can be extremely helpful in pointing to sources of confusion.

Simulation can also be used in the context of a much more
rigorous evaluation. Gould, Conti, and Hovanyecz (1982), for
example, conducted a controlled experiment using a simulated
"listening typewriter". This typewriter allowed users to dictate
a memo, letter, or other material rather than typing on a
keyboard. For the simulation, users spoke into a microphone;
they were seated in front of a CRT which displayed the words as
they spoke. Intervening between the microphone and the CRT (but
hidden from view of the user) was a typist who functioned as a
sophisticated speech-recognition system. With this arrangement,
Gould et al were able to study the effects of vaLious parameters
of the system on user performance. The parameters studied
included vocabulary size (1000 words, 5000 words, or unlimited)

• and whether the typewriter was capable of recognizing continuous
speech or only isolated words (which required the users to pause
after each word). The performance measures of interest included
the judged quality of the resulting letter or memo. This method
of simulating user interfaces, sometimes referred to as the
"Wizard of Oz" technique, allows one to study the effects of

* variations in systems that don't yet exist. For this reason, it
can also be a useful technique for evaluating different interface
concepts during the very early stages of conceptualizing a
system, prior to any attempt at formal requirements analysis.

No matter how informal the evaluation, it is important that
the users be representative and that they have no vested interest
in the outcome of the evaluation. The designers of a system
should never play the part of the users during an evaluation, not
only because of their unavoidable interest in the outcome but
also because they know too much about the system. Nielsen (1984)
makes this point in discussing the results of a study he
undertook looking at programmers learning to use a syntax-
directed editor for the first time:

I

-I

.- -. pj~ W '. ~.. ~.

Since the intended users of such an editor are
programmers and since the editor designers are
themselves programmers, the designers may feel that
they are justified in doing the human factors
evaluation of their editor using themselves as
subjects...The editor developers and the editor users
are two different kinds of programmers however. In the
course of designing and implementing their editor, the
developers form a detailed actual conceptual model of
the editing principles implied by a structure editor as
opposed to a text editor. The users do not have thismodel, and the present experiment showed that ordinary

programmers may indeed have several problems when faced
with a totally new way of editing.

No matter how informal the evaluation, it is important that
the tasks that are carried out during the evaluation be
representative. If they are not representative, the evaluation

* will not yield useful, valid information about the usability of
the system being built no matter how carefully constructed it is
in other respects. Identifying representative tasks is not a
trivial matter but will be much more likely to succeed if a
thorough job of requirements analysis has been carried out.
Moran (1981) points out the difficulty but also the value
inherent in attempting to identify a set of representative tasks:
...there is at present no methodology for making this choice; it

must be done informally. For this reason, perhaps, computer
systems usually seem to be designed with no clear definition of
the tasks for which they are to be used. Precise specification
of the population of tasks that a system is to address is a big
step toward accounting for the user in system design."

3.2.2 Informal Empirical Evaluations

As noted above, when the purpose of an evaluation is to
focus on a single design rather than to compare design
alternatives, one does not need to resort to a set of formal
procedures. Instead, one can learn a great deal from relatively
informal observations of users interacting with the (real or
simulated) system. Videotaping can be a useful tool for this
form of evaluation. Rubsenstein and Hersh suggest that
"Videotaping is much less prone than manual note-taking to errors
of omission or to biases in recording. One tape of someone
sitting back, looking confused, and saying 'I have no idea of
what to do,' is worth a dozen technical papers on the analysis.
Conversely, user success is very convincing on tape."

16

.- ", * -

-, . . .

For tasks that have a large component of mental rather than
physical activity, there are techniques which attempt to gain
accessibility to the users' thought processes so that one can
better identify stumbling blocks to effective user performance.
One such technique involves asking users to verbalize out loud
their thoughts and problems. This technique is also useful in
identifying the user's conceptual model. Another technique
(suggested by Rubenstein and Hersh) is to have pairs of users
working together to carry out a given task -the evaluator can
learn a great deal about their confusions and problems by
observing their efforts to explain things to each other.

The major advantage of an observational evaluation is that a
great deal can be learned without committing substantial
resources. In addition, it does not require any specialized
training in human performance measurement on the part of the
evaluators. The primary disadvantage is that this form of
evaluation does not allow us to compare alternative designs in
any way that is rigorous and repeatable. For that, we must turn
to a standardized evaluation.

3.2.3 Formal Evaluations

When the purpose of the evdluation is to compare alternative
designs, then the goal is not only to ensure that the evaluation

* is objective and meaningful but also that the results obtained
for one design can be directly compared with the results obtained
for an alternative. A major requirement for making this
comparison is consistency in the way that the evaluations are
conducted - the procedures for the evaluation must be carried out
in a standard way for each design that is evaluated. A second

*requirement is to control any and all factors which could
influence the outcome so that any differences observed between
alternatives can be attributed to the designs themselves and not
to other extraneous factors. Both of these requirements are
achieved by adhering to the methodology of controlled
experimentation.

A large part of the challenge in attempting to compare
alternative designs in terms of a seemingly fuzzy attribute like
"usability" is to be sufficiently precise in defining exactly
what is being evaluated so that the comparison could be repeated
by a totally independent person with the same outcome. To
achieve this precision, it is necessary to express the definition
in terms that are observable, measurable and, hence, repeatable.
For this we must turn to an operational definition of usability.
The following discussion of operational definitions is largely
taken from an earlier paper written for the APSE Evaluation and
Validation Team (Bailey and Kramer, 1984).

17

7.-..-

The concept of an operational definition was developed by
experimental psychologists who were studying the effects of
various factors that intuitively seem important but were
difficult to pin down (such as "motivation" or hunger"). What
does it mean to say that an animal in an experiment is "highly
motivated" or "very hungry"? Even if everyone has an intuitive
sense of the meaning of these terms, intuition does not provide
the precision needed to allow an experimenter to replicate the
conditions of the experiment or to compare any two sets of
results. Instead, it was realized that conditions such as
"hungry" or "not hungry" must be defined by the experimental
operations that were used to produce them (for example, 24 hours
of food deprivation for "hungry" versus one hour of food
deprivation for "not hungry"). This is akin to asking what it

means to say that a particular user interface is "easy to learn"
to "easy to use". Intuitively, we may have a strong feeling for
what these terms mean but our feelings do not provide an adequate
foundation on which to conduct a comparative evaluation.
Instead, we must give ease of learning an operational definition
along the lines of the following: "The ease of learning System X
will be defined by the average score obtained by a sample of 20
users with the following characteristics on the following set of
tasks under the following conditions..."

Shackel (1981) gives an excellent example of an operational
definition from a domain outside of computer science. The
definition makes very precise what is meant by saying that a
medicine container is "childproof". In reading the definition
that follows, note that it is TESTABLE because it is expressed in
operational terms. We will return to this example in Section 4.0
when we discuss the generation of testable usability requirements
for the JSSEE.

.consider the U.S. legislation (Federal Register,
1971) and the British Standard (1975) on childproof
medicine containers, both of which are essentially
concerned with (human) performance...issues; they
specify that at least 85% of a test panel of children
shall be unable to open the containers before a
demonstration, and at least 90% of a panel of adults
shall be able to open and properly reclose them
following written instructions only.

While childproof is defined as a pass-fail criterion in this
example, one could easily compare two or more containers in terms
of the degree to which they are childproof by following the
procedures specified as part of the operational definition.

In order to compare two or more designs in terms of
usability, what is needed is an analogous approach which
specifies the population of interest, the tasks, the conditions

18

of observation, and the measures used for the evaluation. In
short, all components of the evaluation must be specified in
sufficient detail so that an outside person could repeat the
evaluation and expect to obtain the same results (within the
bounds of statistical sampling error). This specification must
include at least the following:

- characteristics of the user population to be sampled

- minimum sample size

- procedures for selecting the sample of users

- set of tasks to be used ("benchmarks")

- conditions of instructions, including the availability of
user documentation

- measures to be collected (e.g., time, errors, number of tasks
successfully completed, user-provided ratings)

- procedures for their collection

- any other information required to allow others to repeat the
evaluation as closely as possible

An operational definition transforms a fuzzy concept into a
precise one. One can, of course, argue with any given definition
on the grounds that the users or tasks are not representative,
that the measures are not appropriate, and so on, but at least
one has something concrete and specific to argue.

It is important to recognize that each part of an
* operational definition is important. For example, consider the

characteristics of the user population to be sampled - one might
find different patterns of results depending on the population of
users represented in the sample. In such a case, one could not
simply state that one design is superior to another. Rather, one
can only claim superiority within the bounds of the conditions
that were represented in the evaluation. This has obvious
consequences for the generalizability of evaluation results. If
one is interested in whether a given set of results applies to a
different population of users or a different type of task, the
evaluation must be repeated using that population of users or
that type of task.

The advantage of a standardized evaluation is that it allows
one to compare alternative designs in an objective, rigorous
fashion. The disadvantage is the expense and the extensive
preparation time involved. Specialized training in human
performance measurement is required to plan and carry out the

19

S7

.',-, ,-, - -.. .. , "- ". ". , .'..' ;'i. - -4 .'.'.-'.--. A'.' '...:. - '., v - -. -.- '," .7". -' . - '-. •- ' - ' ' ' , ; ,'I

evaluation since various forms of bias may go unnoticed by an
evaluator untrained in exper~iental methods. A thorough
discussion of standardized evaluations of usability can be found
in Bailey and Kramer (1984).

3.3 Evaluation Facility Required for the JSSEE

The particular questions and comparisons of interest will
change at various points in the JSSEE development. The early
questions are likely to center around the appropriateness of one
or more conceptual models. Later issues will involve more
specific aspects such as the selection of command names or icons,
the design of specific displays, and so on. As an example of the
kinds of issues which can be addressed by empirical evaluation,
Table 2 (adapted from Bewley, Roberts, Schroit, and Verplan,
1983), contains a partial list of the design issues that were the
subject of formal experimentation in the development of the Xerox
'Star' Office Workstation. A total of 15 experiments were conducted,
using more than 200 users and requiring more than 400 hours of
test time, by an evaluation group which averaged six people over

a three-year period.

TEST TOPIC NO. USERS TOTAL HOURS IMPACT

Keyboard 20 40 Led to design of
(6 layouts) -eyboard

Display 20 10 Specified display
phosphor and refresh
rate

Tab-indent 16 16 Caused redesign of
tab and indent
functionality

Labels 12 6 Caused change in
property sheet and
keyboard labels

Property Sheets 20 40 Identified potential
interface problems
and redesigns

Fonts 8 6 Led to decision on
screen-paper
coordination

20
• .

p-I

Icons 20 30 Led to design of
icons

Initial Dialogue 12 36 Led to design of
training
facilities and
materials

HELP 2 6 Validated HELP
40 design ideas

Graphics 10 65 Led to redesign;
validated new design

J-Star Labels 25 25 Led to design of
keyboard labels for
Japanese Star

Table 2: Partial Listing of Empirical Evaluations for the Xerox
'Star' Office Workstation

The evaluators involved in the development of the Star
(Bewley et al.) provide a testimony to the value of empirical
evaluation, in conjunction with the use of design principles and
analytical evaluation:

The impact...has been a pervasive set of small and
* large changes to the user interface. The amount of

difference these changes made is, of course, impossible
to assess, but the quality of Star's user interface is
well known. It has won an award as the 'friendliest'
computer system of 1982, as judged by Computing
magazine. Imitators...are starting to have a major "

* impact on the marketplace. We can only take this as a
ratification of Star's design process, a rich blend of
user interface principles,.., analysis, and human
interface testing.

The evaluation facility for the JSSEE will require, at a
minimum, the following capabilities:

- tools for constructing prototypes and simulations of user
interfaces

- videotaping equipment

- facilities for recording user interaction. These can vary
from logging facilities to capture every keystroke to facilities
to capture much more general kinds of information such as a
summary of the different commands used or the time required to
successfully complete a given task. In general, the data of

21

interest and, hence, the logging facilities required will depend
on the question being addressed for any given evaluation. In the
course of designing a text editor, one might be interested in
evaluating keystroke efficiency and capturing data at that level.
One may also be interested in recording and time-stamping all
input so that the entire sequence may be replayed and examined in
detail for sources of user problems although, as a general rule,
this yields massive amounts of data which can quickly become
overwhelming.

- facilities to ensure consistency in the procedures (e.g., a
standard way of presenting instructions to the users). This is a
requirement only for conducting formal, standardized evaluations.

22

!.p

-. '.-.. -

.

4.0 GENERATING USABILITY SPECIFICATIONS

Section 2.0 contained a discussion of the value of
identifying goals for the design of user interfaces to the JSSEE.
It was also pointed out that one can go beyond the establishment
of high-level goals (such as ease of learning, efficiency of user
action) to the generation of specific, testable specifications
for usability. The recommendation was made that this be done for
a subset of JSSEE functions - specifically, for those that
support highly frequent or critical user activities. These
specifications can serve not only as the basis for generating
system acceptance tests, but equally important, they can serve as
explicit criteria for comparing design alternatives much earlier
in the development. Operational definitions of usability provide
the foundation for these specifications because it is the
operational nature of these definitions which make them
sufficiently precise so as to be testable. The only addition
necessary will be threshold values for each operational
definition.

Consider the example of the childproof medicine container
which was presented in Section 3. This definition, which
actually defined childproof as a particular combination of
threshold values, serves as a precise, testable specification of
exactly what it means for a container to be childproof. One can
take the same approach in the specification of usability, an idea
previously suggested by Shneiderman (1983) and by Kruesi (1983).
For example, beginning with ease of learning as a goal for a text
editor, one can express this in the form of an operational
definition:

X% of a sample of N users with the following
characteristics must successfully learn to carry out

4P the following basic editing functions (e.g., opening a
new file, inserting text, deleting text, saving the
file, printing the document) within a period of two
hours using only the vendor-supplied tutorial material
for instructions.

The specific aspects of user performance that can be
specified include: the time to complete a task, the number of
errors made, and the number of functions successfully completed
in a given time period. In addition, one can measure (and
therefore specify in advance) various aspects of the user's
subjective reactions to a system. There are times when these
subjective reactions are more important than the observable
aspects of a user's performance. For example, judged ease-of-use
is more important for discretionary users (users who have a
choice between using the JSSEE and resorting to manual methods or
another automated system). No matter how impressive the
performance in terms of time or errors, if the discretionary user

0

23

Z

-% . . .

--W

finds the system more difficult to use than the alternative, it
simply will not be used. (This provides another example of why a
good job of requirements analysis is important. One of the
relevant dimensions along which to characterize users is the
degree of discretion.)

Clearly, the larger or the less understood the task, the
more difficult it will be to write meaningful specifications of
user performance. But it is, at least, worth a try for a subset
of the activities to be supported by the JSSEE. In the course of
attempting to write these specifications, one will be required to
think long and hard about the users and the activities that the
JSSEE is intended to support. For cases in which it is not
possible to specify acceptable levels of user performance (which
will probably be many), one might run a series of pilot studies
with existing systems to gain a feeling for acceptable
performance levels. In the course of conducting these studies,
one can also learn a great deal about design characteristics
which appear to contribute to or interfere with various levels of
user performance.

.12

S

24

." ._..-..-.,-.............-- -....-.. -..:-.....-,............... : ;: ;:

5.0 ARCHITECTURAL ISSUES

One of the main themes of this paper is the need for early
and continuous evaluation of user interfaces. In order to
incorporate the inevitable changes that are suggested by these
evaluations, one needs an interface that can be changed rapidly,
easily and without adversely affecting the rest of the system.
Hartson and his colleagues at Virginia Tech have argued that a
major stumbling block in the attempt to design a flexible user
interface is the intermingling of the parts of the software that
communicate with users (the dialogue component) with the parts
that constitute the basic functionality (the computational
component). Yunten and Hartson (1983) present a real-life
example of the consequences of this intermingling:

*A major vendor recently marketed an office automation
system which prides itself on 'ease of use' of its
interface. Yet this statement is used to guide the
user in accessing the help facility:

'The comma key on the minikeypad is the HELP key for
forms. While in the ABC-Style Editor and Calendar
Management, use PF2 for HELP; use "H" for HELP while in
the Desk Calculator; use the "GOLD" key plus an "H" key
while using the XYZ-Style Editor. ...By the way, if
you need help creating a document, it is better to be
in the Word Processing Menu when you press HELP rather

* than in the main menu... It is a good idea to remember
the location and purpose of each key mentioned above.'

Of course, the user must already know how to receive
HELP in order to get the above message. The
explanation given for this inconsistency was that,

* because the dialogue was so entangled with the
computational code, it was unbelievably difficult to
change something as seemingly simple as which key to
use for HELP.

Hartson has argued that, by separating the dialogue
component from the computational component, one creates an
architecture which allows these two components to be developed
independently and in parallel. This separation gives explicit
recognition to the fact that there are really two distinct sets
of problems to be addressed in the design of any interactive
system. One set of problems belongs to the domain of computer
science and has to do with the correct and efficient functioning
of the computational portion of the software. The other set
belongs to the domain of human engineering and has to do with
effective communication between the user and the software.

25

From the perspective of the computational part of the
system, when user input is needed to carry out a given function,
the requirement is really to obtain a token value - the fact that
the token must be obtained from the user is irrelevant to the
problem at hand. With the proposed architecture, all interaction
with the user - including prompts, displays of all types, input

validation, error messages, on-line help and tutorials - is
contained within the dialogue component. It is the concern of
the dialogue component to communicate that request to the user,
to obtain and validate the specific input and to then pass on the
token value to the computational component.

Hartson has argued for a parallel separation in the
personnel skills required to design, implement, and test these
two components. The dialogue component falls directly into the
camp of the human engineer (whose role is that of a "dialogue
author") while the computational component is the responsibility
of the programmer. This division of responsibilities relieves
the application programmer from being side-tracked with
validating user input, writing appropriate error messages and
other forms of feedback. It also encourages the development of
the user interface as a unified whole by a specific person or
group of persons with human factors and communications skills.
Hartson and his colleagues have proposed an entire development
methodology, complete with supporting tools sets, around the
separation of the dialogue from the computational component. The
objective of this methodology is to provide a common framework
and notation for human engineering and software engineering and
to facilitate the efficient and smooth integration of these two
disciplines.

The interaction between the user and the system can be
highly variable with possibilities for all kinds of incorrect
input. The dialogue component must include facilities to handle
this variation, such as error reporting and help facilities. In
contrast to the highly varying nature of the interaction between
the user and the dialogue component, the interaction between the
dialogue and computational components is relatively fixed and can
be formally specified. The ability to formally specify the
interface is what allows for dialogue independence. Once the
interface (control flow and data flow) between the two components
has been established, the human engineer is free to experiment
with all kinds of alternatives in the dialogue component without
impacting the rest of the system so long as their common
interface does not change. Not only are the dialogue and
computational components logically and physically separate at
design time, further separation is attained during run time by
their concurrent execution as autonomous processes. Thus,
changes in one component do not require a change or a re-linking
of the other component. In multi-processor implementations, this
may add to the efficiency of execution as well.

26

. ". . .. -.. , .. .-..,* "- . ' ' *.

The Hartson work is of interest because it represents the
most comprehensive effort to incorporate human engineering as
part of a larger system development methodology. The ideas
proposed deserve closer study for the JSSEE. There are two

* problems of particular importance to the JSSEE that can be
addressed by this approach. One is the problem of device
dependencies which is likely to be a major issue given existing
hardware which ranges from teletypes to screen-oriented character
displays to high-resolution graphical displays. Dialogue
independence allows for drastic variation in user interfaces for
the same set of functions. Thus, interfaces can be developed for
a wide range of hardware and interaction styles.

A second problem that must be addressed involves the
addition of application-specific and service-specific tools to
the JSSEE. There is potentially a very real problem that these
additional tools will lead to serious inconsistencies in the user
interface, at a number of levels. One possible solution is to
require any and all add-on tools to contain only the
computational portion and to conform to a formal specification
for the interface between the computational and dialogue
components. It will then be a human engineers' job (residing
perhaps at the Software Engineering Institute) to write the
dialogue for that added tool.

2

OS

OI

27

. .-- ° -.- , . - - . ' ,

6.0 RECOMMENDATIONS

1. Include human engineering as a major emphasis in the
development of the JSSEE.

A basic guiding principle should be a recognition of the user
as an integral part of the human-software-hardware system. For
the entire system to function effectively, the design must be
represented and evaluated, not only from the perspective of the
hardware and software, but also from the perspective of the user.
The behavior of the system should be consistent at all levels and
in all its various aspects. Several general classes of design
methods and aids were discussed, all of which should be used in
the development of the JSSEE, particularly in helping to insure
consistency. They include:

-- language models of human-computer interaction
-- user conceptual models

-- design guidelines

In addition, empirical evaluation, including both informal
observational and formal studies, should provide a major source of
input to the design process. The evaluation of various design
alternatives, in terms of their impact on user performance, should
begin early and should continue throughout the development and
evolution of the system. In order to evaluate user performance in
a way that is meaningful and objective, an evaluation facility
will be required (which is discussed as Recommendation 5 below).

2. Conduct an empirical analysis of JSSEE users and their tasks.

The output of this activity should identify the following:

- high priority user tasks

- user and task characteristics

-design goals and constraints

The JSSEE Operational Concept Document (OCD) contains a
* high-level description of various groups of JSSEE users and their

responsibilities and tasks. A major next step is to validate
these descriptions and to add considerably more detail about the
tasks and users in terms of characteristics which have
implications for the design of user interfaces to the JSSEE.

* These characteristics can then be used in generating usability
goals (e.g., ease of learning) for specific combinations of users
and tasks as well as in identifying design constraints (e.g.,
minimal typing). These can also help in gaining insight into the
conceptual models likely to be adopted by various groups of

28

1z2

.

users. The establishment of design goals will force the-'
7'

developers to think in detail about what usability means for
different users and different activities. These goals can provide
a valuable framework for design activities and can steer the
design effort in an appropriate direction. In the case of
critical user activities, these goals should be transformed into
precise, testable requirements specifications that can serve as a
basis for generating system acceptance tests of usability.

An additiondl output of this analysis should include the
identification of high priority user tasks. These priorities
should be determined on the basis of task criticality and
frequency. The set of high-priority user tasks will provide a
focus for the human engineering effort; these tasks should provide
the basis for generating a specific set of benchmark tasks for
comparing design alternatives in terms of their effects on user
performance and for comparing the JSSEE to other systems.

This empirical analysis will most likely be accomplished
through the use of surveys, interviews and direct observation of
user activities. The recommended first step is a study outlining
a feasible approach for gathering, analyzing, and summarizing this
information within reasonable resources limitations.

3. Express design goals in the form of operational definitions.

Through the use of operational definitions, seemingly fuzzy
concepts such as "ease of learning" or "ease of use" will become
precise and testable. This will be essential for comparing design
alternatives in terms of their "usability". These operational
definitions will also form the foundation for system acceptance
tests of usability.

4. Investigate in detail the architectural implications of
dialogue independence.

A recommended early activity is to take a closer look at the
work being done by Hartson and his colleagues at Virginia Tech.
Their work represents a comprehensive, well-thought out approach
to the successful integration of human engineering requirements
and methods with more traditional software engineering concerns.
It is worth looking not only at the concepts surrounding the
separation of the dialogue and computational components but also
at the corresponding tool sets for the human engineer and
programmer.

The requirements and potential specifications for the
interface between the dialogue and computational portions of JSSEE
should be immediately explored to establish feasibility. Present

29

-.-.---... -,

efforts should be reviewed (e.g., Apple (Bralsicke, 1985),
Imperial Software Limited, and IBM (Carlson, Rhyne and Wellen,
1983). The earlier such an interface can be established the
better. In any case, a high level of confidence is needed in such
a specficiation before final implementation of JSSEE begins. The
implications of the need for extensibility in the dialogue portion
of the JSSEE should be an important part of this investigation.

5. Establish a JSSEE Human Engineering Evaluation Facility.

In comparing alternative designs for the JSSEE, an important
criterion should be usability, particularly as measured by user
pertormance. In measuring user performance, one is, in reality,
measuring the performance of the hardware-software-human system as
a whole. Hence, the evaluation of usability will provide a direct 0
measure of system productivity.

The generation of operational definitions of usability will
provide the foundation for rigorous, objective comparisons of
design alternatives. For both formal, standardized evaluations as
well as informal, observational analyses, facilities will be
needed for measuring user performance and for recording user
interaction; these will include videotaping as well as computer
instrumentation to capture information about keystrokes or
commands used, their sequence, timing, and so on. Facilities for
creatinq simulations and prototypes of user interfaces will also
be needed.

6. Include the human engineer as a JSSEE user in the Operational
Concept Document (OCD)

This paper is concerned with the human engineering of the
JSSEE. The issues, methods, and tools discussed are not specific
to the development of software support environments but apply
equally to the development of any system which interfaces to human
users. It is equally important that methods and tools be included
within the JSSEE to support the human engineering of mission
critical computer resource (MCCR) systems. The first step toward
that end is to explicitly include the human engineer as a JSSEE
user in the OCD. The following paragrai'is provides one possible
description of the human engineer as a JSSEE user.

The human engineer is responsible for the design,
implementation, evaluation, and maintenance of user interfaces to
a system. The human engineer analyzes user interfaces with
respect to the physical and mental load on the user and with
respect to their effect on user performance. The human engineer

30

also contributes to the design of the operational procedures
(management, administrative, and technical) in which the users and
tools are embedded.

Human engineering methods can be categorized into four major
classes: (1) use of design guidelines, standards and principles,
(2) use of language models of the user interface, (3) explicit
consideration of the conceptual models likely to be adopted by
users, and (4) empirical evaluation (user testing). The general
classes of automated support for the human engineer include tools
for simulating/prototyping aspects of user interfaces, tools for
creating and modifying displays and display templates of all kinds
(e.g., text, graphics, forms, menus), tools for generating formal
descriptions of command languages and other types of user input,
tools for logging and time-stamping user interaction (with a
prototype or with an implemented system), and databases for
storing relevant information (e.g., displays, display templates,
language definitions, data generated from logging user
interaction).

0

31

• ""-~~..... :,,. .:- ,, , . , .,..:, j

-. 4

REFERENCES

Bailey, E.K. and Kramer, J.F. "A Framework for Evaluating the
Usability of Programming Support Environments", Manuscript
submitted for publication.

Bewley, W.L., Roberts, T.L., Schroit, D., and Verplank, W.L.
"Human Factors Testing in the Design of Xerox's 8010 'Star'
Office Workstation". In CHI'83 Conference Proceedings: Human
Factors in Computing Systems, ACM, December 1983, pp. 72-77.

Braesicke, J.D., et al., "Working Group Report on User
Interfaces", Proceedings of the ACM AdaTEC Future Ada
Environments Workshop, to be published in SIGAda Ada Letters and
SIGSOFT Software Engineering Notes, Spring, 1985.

Carlson, E.D., Rhyne, J.R., and Wellen, D.L., "Software Structure
for Display Management Systems", IEEE Transactions on Software

Engineering, Vol. SE-9, No. 4, July 1983, pp. 385-394.

Gould, J.D., Conti, J., and Hovanyecz, T. "Composing Letters
with a Simulated Listening Typewriter", in Proceedings of the
Human Factors In Computer Systems conference, ACM, Washington,
D.C., March 1982, pp. 367-370.

Hartson, H.R. and Johnson, D.H. "Dialogue Management: New
Concepts in Human-Computer Interface Development", Manuscript
submitted to ACM Computing Surveys (revised version), March
1984.

Kruesi. E. "The Human Engineering Task Area", Computer, Vol.
16, No. 11, November 1983, pp, 86-93.

Lindquist, T.E. "Assessing the Usability of Human-Computer
Interfaces", IEEE Software, Vol. 2, No. 1, January 1985, pp.
74-82.

Mack, R.L., Lewis, C.H., and Carroll, J.M. "Learning to Use Word
Processors: Problems and Prospects", ACM Transactions on
Office Information Systems, Vol. 1, No. 3, July 1983, pp. 254-
271.

Moran, T.P. "Guest Editor's Introduction: An Applied Psychology
* of the User", ACM Computing Surveys - Special Issue: The

Psychology of Human-Computer Interaction, Vol. 13, No. 1,
March 1981, pp. 1-11.

Nielsen, J. "Learning Difficulties of Programmers Faced with a
New Programming Environment", Technical Report DAIMI PB-181,
Computer Science Dept., Aarhus Univ., Aarhus, Denmark, 1984.

32

I"9

°- * **

" %[.**-

Reisner, P. "Formal Grammar and Human Factors Design of an
Interactive Graphics System", IEEE Transactions on Software
Engineering, Vol. SE-7, March 1981, pp.2 29-240.

Rubinstein, R. and Hersh, H. The Human Factor: Designing
Computer Systems for People. Digital Press, 1984. Schneiderman,
B. (1983) -To be added

Shackel, B. "The Concept of Usability", Distributed as part of a
tutorial entitled "Usability: Its Meaning and Evaluation in

Human-Computer Systems", Present at CHI'83: Human Factors in
Computing Systems, December 1983.

Shneiderman, B. "Human Factors of Interactive Software," (In A.
Blaser and M. Zoeppritz, Eds.) End User Systems and their Human
Factors, Springer-Verlag Lecture Notes in Computer Science,
Berlin, 1983, pp. 9-29.

Smith, S.L. and Aucella, A.F. "Design Guidelines for the User
Interface to Computer-Based Information Systems", Tech. Report
ESD-TR-83-122, USAF Electronic Systems Division, Hanscom Air
Force Base, Mass., March 1983.

Yunten, T. and Hartson, H.R. "A SUPERvisory Methodology And
Notation (SUPERMAN) for Human-Computer System Development", To
appear in Advances in Human-Computer Interaction, Ablex
Publishing Corp., May 1985.

33

L '

Distribution List for IDA Paper P-1818
fe...'

Col. Joe Greene 10 copies
Director, STARS Joint Program Office
1211 Fern St., C-107
Arlington, VA 22202

Others :?

Defense Technical Information Center 2 copies
Cameron Station
Alexandria, VA 22314

Dr. Elizabeth Bailey 25 copies
400 N. Cherry St.
Falls Church, VA 22046 .-

Rex Hartson
Department of Computer Science
562 McBryde Hall
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Jakob Nielsen
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Ben Shneiderman
Computer Science Department
Unviersity of Maryland
Colleg. Park, Maryland 20742

CSED Review Panel

Dr. Dan Alpert, Director
Center for Advanced Study
University of Illinois
912 W. Illinois Street
Urbana, Illinois 61801

Dr. Barry W. Boehm
TRW Defense Systems Group, MS 2-2304
One Space Park
Redondo Beach, CA 90278

Dr. Ruth Davis
The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

I:?
' ,1

I¢ . - ' " " o .- ' " ' -' - , - -' ', " " ' " - - "- . - ' ' -' ' -" - - " "" - -'" "'" '""

Dr. Larry E. Druffel
Software Engineering Institute
Shadyside Place
480 South Aiken Av.
Pittsburgh, PA 15231

Dr. C.E. Hutchinson, Dean
Thayer School of Engineering
Dartmouth College
Hanover, NH 03755

Mr. A.J. Jordano
Manager, Systems & Software
Engineering Headquarters
Federal Systems Division
6600 Rockledge Dr,
Bethesda, MD 20817

Mr. Robert K. Lehto
Mainstay
302 Mill St.
Occoquan, VA 22125 4

Mr. Oliver Selfridge
45 Percy Road
Lexington, MA 02173

IDA

Gen. W.Y. Smith, HQ
Mr. Seymour Deitchman, HQ
Ms. Karen Webber, HQ
Dr. Jack Kramer, CSED
Dr, John Salasin, CSED
Dr. Robert Winner, CSED
Ms. Katydean Price, CSED 2 copies
IDA C&D Vault 3 copies

,.

:-..S

- ,

"..

-iS

I-% !S

o*°

I0I
. .!

';

,:.,..-

~ ~ i A j A . -**** .. **

